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On the Impact of Ocean Surface Motion on
Delay-Doppler Altimetry

Louis Marié, Frédéric Nouguier, Doug C. Vandemark, Fabrice Ardhuin, and Bertrand Chapron

Abstract—The Poseidon-4 radar altimeter on board Sentinel-6
“Michael Freilich” (S6-MF) offers unique opportunities to more
precisely estimate the impact of ocean surface motion on Delay-
Doppler altimetry. The seminal “frozen-sea” analysis by [1] is
extended to include the effect of these surface motions in the
ensemble average Delay-Doppler Map signature of an isolated
sea surface facet. Integrating this elementary signature over the
instrument field of view, a fully analytical stacked echo waveform
model is then derived, namely the IASCO echo waveform model
Eq. (20). This IASCO waveform is validated, in the frozen-
sea special case, with the well-established SAMOSA waveform
model [2]. Sensitivities with respect to surface significant wave
height, vertical velocity standard deviation and the “Geophysical
Doppler” vector UGD [3] projection along the satellite ground-
track velocity can then be directly evaluated. These developments
provide theoretical and analytical means to jointly exploit S6-
MF conventional and Delay-Doppler radar waveforms [4], to
help refine estimates of Essential Climate Variables (Sea Level,
Signficant Wave Height). With global upper ocean wave induced
motions, systematic discrepancies between sea surface parameter
estimates retrieved from S6-MF shall be mapped to possibly help
reduce sea state biases on sea level instantaneous estimates.

Index Terms—Sentinel-6 MF, Delay-Doppler Altimetry, track-
ing waveform, surface displacement, surface motion.

I. INTRODUCTION

SAtellite radar altimetry provides unique data on sea level,
surface wave significant height and surface wind speed.

In practice, the determination of these parameters is obtained
by fitting a theoretical function to the measured waveform,
that is the observed averaged distribution of echoes as a
function of time delay between the transmission and reception
of radar pulses. This fitting is know as retracking and the actual
methodology involves the choice of a theoretical waveform
shape, and the choice of a cost function.

Improving the quality of the retrieved observations thus
requires improving in a consistent way, not only the instru-
ment characteristics, but also the accuracy of the parametric
waveform model used in the retracking process. Before the
instrument SIRAL on Cryosat-2, the information contained in
the phase of the return signal from successive radar impulsions
was discarded: only the echo signal intensity was considered,
and averaged over bursts of impulsions to improve the Signal
to Noise Ratio and mitigate speckle noise before retracking
[5].
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Echo waveforms produced in this way were satisfactorily
understood in the framework set by the original papers of
[6] and [1], in which the overall waveform is considered to
be the sum, on an intensity basis, of the echos returned by
the individual scattering elements of the sea surface present
in each range bin, assuming that the distribution of surface
elevations is independent of the range bin [7]. As such, it
can be modelled as the triple convolution [8] of the range
“Point Target Response” (PTR), a function characterizing the
intensity weighting in each range gate due to the instrument
range resolution process, of the probability distribution func-
tion of the vertical displacement of scattering elements with
respect to their rest position due to surface waves, and of a
function describing the area of the sea surface encompassed in
each range bin and the radiated power distribution due to the
antenna system, the “Flat Surface Impulse Response” (FSIR).

Retrackers based on this waveform model typically retrieve
three geophysical parameters from the radar signal [9]: the
normalized radar cross-section σ0, which is related to the
surface slope statistics [10]–[12] the standard deviation of the
vertical surface displacement, from which the significant wave
height Hs is derived, and the mean range from satellite to sea
surface over the instrument footprint, which is later processed
to give the Sea Level Anomaly (SLA), tides, etc.

The SIRAL instrument onboard CryoSat-2 was the first
altimeter instrument to allow coherent (phase-preserving) pro-
cessing of successive radar echos. The implementation of
the Delay-Doppler Altimetry (DDA) concept proposed by
[13], follows a Synthetic Aperture Radar (SAR) processing
applied to successive echos to separate the signal contributions
according to the along-track bins they return from. It results a
two-dimensional Delay-Doppler Map (DDM) of the received
power distribution across delay and Doppler. A “Range cell
Migration Correction” (RCMC or RMC) is then applied to
the waveforms from the different Doppler bins to realign
them by removing the along-track distance contribution from
the instrument-to-surface slant range. At this stage, signal
accumulation (“stacking” or “multi-looking”) is performed
before a retracking of the resulting 1-D waveform is applied.

Several approaches have been proposed for the signal accu-
mulation stage:
– In the “SAR altimetry” approach [14], SAR-processed radar
waveforms viewing the same groundpoint during successive
bursts of pulses are gathered together before summation. Fully-
Focussed SAR, in which the final summation itself is phase-
preserving, has even been successfully implemented [15], pro-
viding observations of the surface elevation of very compact
water bodies: lakes, canals [16], sea-ice leads [17].
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– In the alternative “LR-RMC” approach recently proposed
by [18], SAR-processing and RMC are applied on bursts of
pulses, but are immediately followed by an incoherent stacking
of the intensity. This approach does not yield a finer along-
track resolution of the observations, but does provide a large
increase in SNR for the subsequent retracking process.

Already clearly explained [13], the RMC has the effect of
redistributing the total energy contained in the echo waveform,
shifting the weight towards the instant of encounter of the
radar pulse with the sea surface at nadir. The echo waveform
is strongly affected in the process, featuring a sharp peak,
instead of a step, at the instant of encounter. This redistribution
of energy increases the SNR of the useful portion of the signal,
thereby increasing the accuracy of the tracking process.

With the advent of DDA, and its subsequent development
through the Sentinel-3A and Sentinel-6 “Michael Freilich”
(S6-MF, [19]) missions, thus came the need to develop a
new generation of retracking model waveforms, to serve as
a basis for ground segment retrackers. Note, the two stacking
strategies mentioned above yield equivalent waveforms when
the situation is homogeneous in the along-track direction.

Starting from [20], devoted to the Cryosat-2/SIRAL wave-
form, a number of such DDA waveforms have been derived,
with varying degrees of sophistication. [21] and [22] were the
first to benefit from actual Cryosat-2 data. [22] proposes a
very lucid exposition of the problem, analytically performs a
number of steps, before resorting to the numerical evaluation
of a number of integrals, with convincing comparisons with
Cryosat-2 waveforms. [22], in the context of geodesy, goes
further analytically, but overlooks the issue posed by the
finite (and actually quite coarse) resolution of the along-track
SAR processing. Had the method been used operationally, the
proposed waveform peak is too narrow for given Hs, leading to
consistent overestimation of Hs. In the framework of the ESA-
funded SAMOSA project, [2] derived a semi-analytical model,
since adopted by a large user community. Independently,
[23] have proposed another semi-analytical model, putting
specific emphasis on the retracking of waveforms suffering
from instrument antenna mispointing.

These contributions were essentially developed within the
original [1] framework, based on a triple convolution in
the range direction only. Developments did not take into
account the fact that the finite azimuthal resolution of the
SAR processing and scattering facets motions (and not just
height displacements) in effect also introduce a PTR and
a probability distribution function in this direction. A more
complete framework had to involve a triple convolution in the
azimuth direction also.

Several steps in this direction were made by [4], [24]–[26].
These authors first proposed a computational approach involv-
ing a convolution with an azimuth PTR [24], then included
a probability distribution function for the instantaneous radial
velocity of the surface scattering elements [25], then discussed
its statistics in relation with the overall sea state characteristics
[26]. Finally, all these elements were consolidated in [4].

Though its initial motivation came from the conference
presentation [27], the present contribution is derived indepen-
dently of these works. Developments are performed within the

framework of the ESA-funded “Interpretation and Analysis of
SKIM Campaign Observations” (IASCO) project, focused on
the analysis of airborne Doppler radar observations of the sea
surface collected as part of the phase-A work for the Surface
KInematics Multiscale (SKIM) concept that was a candidate
mission for ESA Earth Explorer 9 [3], [28].

The structure of the article is the following: The problem
context, including key instrument characteristics and acqui-
sition geometry, is summarized in section II. A derivation
of the instrument response to a single scattering facet, the
basic building block of the overall instrument response, is
discussed in section III. A very detailed consideration is given
to the problem of statistical averaging over realizations of the
random sea surface process, in terms of facet instantaneous
elevation and velocity. The idea here is to reproduce for a
moving sea surface the initial “frozen-sea” analysis of [1].
The probabilistic theory of these fluctuations is detailed in the
gaussian sea state framework in Appendix A. The integration
over the instrument Field of View (FoV), required to upscale
the results obtained at the facet level to the altimeter waveform,
is discussed in section IV. For computational convenience, the
rationale followed is essentially that of the LR-RMC algorithm
of [18]. However, as mentioned above, all the approaches give
equivalent results in the along-track homogeneous situation
in which model waveforms are usually derived. This section
culminates with the analytical IASCO SAR altimeter wave-
form model Eq. (20), which is compared with the Open-Source
pySAMOSA [29] implementation of the accepted SAMOSA
model [2]. It is then extensively discussed, in section V.
Conclusions and perspectives are finally presented in section
VI.

II. PROBLEM CONTEXT

A. Main instrument characteristics

The main S6-MF orbit and Poseidon 4 instrument charac-
teristics are summarized in table I. The mission is thoroughly
described in [19]. Some of its main characteristics are briefly
recalled here for the sake of completeness.

The mission main payload is Poseidon 4, a dual-frequency
Ku-/C-band altimeter. A notable difference with respect to its
predecessors of the Poseidon series of instruments is the fact
that the chirp deramping process is performed numerically
after digitization, instead of analogically in the receiver front-
end. It is capable to work in the so-called “open-burst” mode,
where it continuously alternates between transmission and re-
ception of radar pulses. This is a significant improvement with
respect to the SAR modes of the Cryosat-2 and Sentinel-3A
instruments, which had to alternate between much longer burst
transmission and burst reception phases (“closed-burst” mode).
This entails in particular that the signal can be processed using
both the CA and DDA approaches at all times. One downside
of the open burst mode, however, is that the pulse travel-time
sets strong constraints on the pulse repetition frequency fp,
which has to be roughly halved with respect to the previous
instruments, and to vary continuously, to adjust for travel-
time variations along the platform orbit. Finally, the instrument
features a significantly improved onboard processor, which is
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capable of performing onboard the range-resolution, along-
track Fourier transformation, and RMC steps of DDA pro-
cessing. This capability is however not in permanent use, and
the DDA processing is currently performed on ground.

Parameter Symbol Value

Mean flight altitude h 1347 km

Mean flight velocity vs 6967 m.s−1

Mean Earth Radius RE 6371 km

Orbital factor κ = 1 + h/RE 1.21

Average pulse repetition
frequency fp 9178 Hz

Carrier frequency
(Ku-band) fc 13.575 GHz

Carrier wavelength
(Ku-band) λ 2.21 cm

Pulse duration Tp 32 µs

Chirp bandwidth B −320 MHz

ADC sampling frequency fs 395 MHz

ADC I/Q
number of samples Ns 20480

Chirp rate s −1.0 1013 Hz.s−1

Range-resolution effective
time shift δtrr = htrk

c
+ fc

s
3.13 ms

Pulses per burst Np 64

Burst duration Np/fp 6.97 ms

Antenna 3 dB
half-beamwidth

θ3dB
2

0.665◦

2-way ambiguity velocity λfp
4

∼ ±50.7 m.s−1

2-way ambiguity y λfp
4

h0
vs

∼ ±9.8 km

1-way range diversity
over FoV r − h0 ≃ κ y2

2h0
∼ [0; 43.2 m]

Elevation angle θ at end
of unambiguous zone

λfp
4vs

0.417◦

TABLE I
SENTINEL 6-MF / POSEIDON-4 DESIGN PARAMETERS.

One other consequence of the low fp of Poseidon 4 is the
fact that the Nyquist frequency fp/2 of the SAR processing is
also quite low. A convenient prescription for the 1-way power
radiation diagram G of the instrument antenna is a Gaussian
dependence on the elevation angle θ [1], [21]:

G(θ) = G0 exp

(
−2θ2

γ

)
, γ =

sin2(θ3dB)

2 log(2)
(1)

where G0 is the boresight gain of the instrument, θ3dB is
the antenna half-power beamwidth. As can be seen in table I,
the elevation angle at the along-track position where the
Doppler frequency shift due to the platform flight velocity
is equal to the Nyquist frequency is of the order of 0.42◦,
i.e. actually smaller than the antenna 3 dB half-beamwidth,
0.66◦. A significant portion of the instrument Field of View
(FoV) is thus aliased in the SAR processing, and appears in
conspicuous sidelobes in the DDM.

B. Measurement geometry

1) From the side: Figure 1 presents a side-view of the
satellite trajectory and acquisition geometry, in the vertical

O

•S

z

•N

h

RE

•
P

y

∆

r⃗

ζ

α

ψθ

vt

vr
v⃗s

Fig. 1. Side-view of the nadir altimeter acquisition geometry. The Earth
center, satellite antenna center-of-phase and nadir are respectively denoted O,
S and N . The satellite is at altitude h above the reference spheroid of radius
RE . The satellite flight velocity with respect to the Earth surface is v⃗s, with
norm vs, tangential component vt, radial component vr (positive upwards).
At the current observation point P , the Earth surface is at height η above
the reference spheroid of radius RE , the elevation angle is denoted θ, the
satellite zenith angle is denoted ψ, the geocentric distance from nadir is α.
The vertical distance between the reference spheroid and its tangent plane at
nadir is denoted ∆ (it is always negative). The vector from S to P is denoted
r⃗, and its norm, the radar slant range to P , is denoted r.

plane locally tangent to the trajectory in the Earth-bound
frame [30]. A number of useful coordinate systems can be
defined (see also Fig. 2). The current observation point P can
be referred to by its geocentric distance from nadir α, azimuth
with respect to the satellite ground track φ and distance from
the Earth center RE+η, or by its cylindrical (ρ, φ, z = ∆+η)
or Cartesian (x, y, z = ∆ + η) coordinates in the frame
of reference locally tangent to the sphere and centered on
the nadir. ∆ denotes the distance in the z direction between
the reference spheroid and the plane tangent to the sphere at
nadir. It is always negative. In this work the y-direction of the
Cartesian coordinate system is parallel to the satellite velocity
vector.

Given the typical beam apertures used in nadir altimetry, ρ
is of the order of at most 104 m. At such scales, it is easy to
see that the observation point distances from nadir following
the spherical surface, ζ, and along the tangent plane (ρ, equal
to
√
x2 + y2), differ by less than 5 mm, and can be used

interchangeably. From this one gets that θ ≃ tan(θ) = ρ/h.
Clearly, however, the Earth sphericity must be taken into

account for the vertical deflection of the surface, with ∆
varying with ρ as ∆ = −ρ2/(2RE) and reaching values of the
order of 8 m at the edge of the instrument beam. This effect
is also felt in the expression of the slant range from S to P ,

r =

√(
h− η +

ρ2

2RE

)2

+ ρ2 ≃ h− η +
κ

2h
ρ2,

which increases faster with ρ2 than in the flat-Earth approx-
imation by a factor κ = 1 + h/RE , equal to 1.21 for the
Sentinel-6 MF flight parameters. In a similar way, though the
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elevation angle from the satellite, θ, is well approximated by
its flat-Earth expression ρ

h , the satellite zenith angle has to be
corrected for sphericity and is given by

ψ = κ
ρ

h
.

•
N

x

y

ρ

P•φ

f ↗

f ↘

v⃗s

φGD

U⃗GD

Fig. 2. Top-view of the nadir altimeter acquisition geometry. The Nadir is
denoted by N . The y−direction of the Cartesian coordinate system is parallel
to the ground projection of the satellite flight velocity vector, v⃗s. The azimuth
angle φ is counted counterclockwise from the y-direction. The “Geophysical
Doppler” vector is U⃗GD. The current point P can be referred to by its
cylindrical coordinates (ρ, φ,∆+ η), its Cartesian coordinates (x, y,∆+ η),
or by its Delay-Doppler coordinates r =

√
(h−∆− η)2 + ρ2 and f . The

isorange lines are represented by the circular grid centered on N , the isodops
in absence of mean surface motion by the dashed lines grid, and the actual
isodops showing the effect of mean surface motion by the thin lines grid.

2) From above: Figure 2 represents the acquisition geome-
try seen from above. The satellite flight velocity is directed
along the positive y-direction. The current point P on the
surface can be labeled using different sets of coordinates,
Cartesian (x, y, z = ∆ + η), cylindrical (ρ, φ, z = ∆ + η),
or, more interestingly, a Delay-Doppler coordinates set con-
structed from its slant range from the satellite, r, equal to
h− η + κ

2hρ
2, and the Doppler shift at its location, f .

At a given location, this Doppler shift is composed of
a “frozen-sea” contribution and a wave-induced contribution
emerging from the correlation of the Lagrangian velocity of
the specular facets and their backscattered cross-sections. This
contribution is discussed in section III and Appendix A, where
it is shown that it can be represented as the projection on
the radar line-of-sight of an additional “Geophysical Doppler”
vector UGD. In [3], this vector has been shown to be further
decomposed in a “Current Doppler” vector UCD, i.e. the
ocean “Total Surface Current Vector” and a “Wave Doppler”
vector due to the intrinsic motion of the sea surface specular
facets. Note, this “Wave Doppler” vector is the dominant
component (see Eq. 2 in [31]), with magnitude of the order
of 2.5 to 3.5 m.s−1 at Ku-band, and a weak dependence on
sea state and wind speed.

Denoting the magnitude of this vector, UGD, and the
azimuth it points to, φGD, the expression for the total Doppler
frequency shift can be read from Eq. (13) as

f =
2

λ

[
−vr +

yvt
h

− tan(ψ)UGD cos(φ− φGD)
]
,

with λ the wavelength of the carrier radio waves. The radial
velocity term is discussed in section III. It is easily removed
as a “Doppler Centroid Anomaly”, and does not warrant much
discussion. Turning to the Geophysical Doppler contribution,
UGD is small with respect to vt. Introducing ε, the fractional
Doppler shift change observed due to the surface motion when
looking along the satellite flight direction, equal to

ε = −κUGD
vt

cos(φGD),

and the deflection angle

φε = −κUGD
vt

sin(φGD),

f can be expressed to first order in UGD/vt as

f = −2vr
λ

+
2vt
λh

ρ(1 + ε) cos(φ− φε). (2)

When the satellite is going “against the wind”, φGD ≃ 180◦,
and ε is positive, indicating an excess Doppler shift with
respect to the “frozen sea” situation. For the Sentinel-6 MF
flight parameters, ε is of order 4.10−4, and φε is of order 0.03◦

at most. The frozen-sea isodops are represented as dashed lines
in figure 2, while isodops accounting for a (much exaggerated)
Geophysical Doppler contribution are represented in thin lines.

III. NEAR-NADIR DELAY/DOPPLER RADAR:
AT THE FACET LEVEL

Near-nadir radar backscattering is well represented in the
so-called Physical Optics, Kirchhoff, approximation. The elec-
tromagnetic field backscattered to the instrument from the sea
surface is dominated by the weighed composition of individual
contributions backscattered from the different stationary-phase
(i.e. “specular”) facets of the surface [32], [33]. The generic
traits of the life histories of such specular points have been
thoroughly studied in the gaussian sea surface context by
[34]. In short, such “facets” appear and disappear at well-
defined instants, and have well-defined trajectories in between.
They thus constitute meaningful objects, and can be ascribed
Lagrangian trajectories and velocities during their lifetime.

The phases of their contributions to the overall field are
given by the two-way distances of the facets to the phase center
of the instrument antenna, modulo the wavelength, and are
thus essentially random, uniformly distributed and statistically
independent. Upon taking products of the field with itself at
the same or different instants or locations and performing
ensemble averages, only terms involving the product of the
contribution of one facet with its complex-conjugate can
survive. Practically, this means that interferences between the
different scattering elements of the scene do not need to be
accounted for in the computation of the average total received
power.
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These assumptions lead to Rayleigh statistics for the field,
and to the fact that the average backscattered power is propor-
tional to the illuminated surface even though the field math-
ematical expectation remains zero, in analogy with the phe-
nomenology of the Wiener process. Two other consequences
are that the power Point Target Response of the instrument
is equal to the squared modulus of its amplitude Point Target
Response, and that applying the Range Migration Correction
step of DDA to complex amplitudes or detected power yields
the same result for the average power Delay/Doppler Map
(DDM).

This section contains the derivation of the Delay/Doppler
power response of the instrument to a single facet, the basic
building block from which an understanding of the DDM
obtained from near-nadir observations of a whole moving sea
surface can be constructed.

A. Facet kinematics

Consider an isolated facet whose rest position is
(x0, y0, z0 = ∆ + η). It is affected by surface wave motion,
and at the middle of the observation interval it is located at
(x0 + x̃, y0 + ỹ, z0 + z̃) and moves with respect to the Earth
with a Lagrangian velocity (ũ, ṽ, w̃). Assume this Lagrangian
velocity to be constant, and small with respect to both the
satellite velocity and the speed of light. If we denote by τn
the instant of transmission of the n-th radar pulse with respect
to the middle point of the observation interval, and by t′ the
flight time of the pulse since its transmission, the distance
from the radar to the facet evolves with time τn + t′ as:

r(τn + t′) =

√√√√√√ (x0 + x̃+ ũ(τn + t′))2

+(y0 + ỹ + (ṽ − vt)(τn + t′))2

+(h− (z0 + z̃) + (vr − w̃)(τn + t′))2

In this expression, many terms are very small with respect to
the carrier wavelength over the ranges of variation of both t′

and τn, and can be neglected. A robust approximate expression
becomes

r(τn + t′) ≃ h− (η + z̃) +
κρ20
2h

+
[
vr − y0

vt
h

− w̃
]
τn

+
[
vr − y0

vt
h

]
t′ +

v2sτ
2
n

2h
.

The last term in this expression can be relevant in the Fully-
Focused SAR altimetry context, for which coherent processing
is used for τn as large as 1 s. On the shorter time scales
relevant for DDA, it remains negligibly small. The slant range
from the radar to the facet is thus obtained as a function of
the fast and slow times as:

r(τn + t′) ≃ (3)

h+
κρ20
2h

− η − z̃︸ ︷︷ ︸
r0

+
[
vr − y0

vt
h

− w̃
]
τn︸ ︷︷ ︸

r′0τn︸ ︷︷ ︸
rn

+
[
vr − y0

vt
h

]
t′︸ ︷︷ ︸

ṙ0t′

.

The vertical component of the Lagrangian velocity of the facet
manifests itself as a slow pulse-to-pulse phase drift. The other

facet velocity components are much too small to be felt. The
large dominating contributions due to the platform velocity,
however, must be taken into account on both the slow (inter-
pulse, τ ) and the fast (intra-pulse, t′) time scales.

B. Radar signal generation and reception

Consider a burst of Np radar pulses, numbered from 0 to
Np − 1, transmitted every 1/fp seconds from the satellite
between −Tb/2 and Tb/2. Pulse number n is transmitted at
instant τn. Time between transmission and reception of a pulse
is measured with the “fast time” variable t′. For each pulse,
transmission thus lasts from t′ = −Tp/2 to t′ = Tp/2. The
return signal is recorded during a time window that is centered
around an estimate of the two-way pulse travel time that is
provided by an onboard tracker, t′trk = 2htrk/c. This time
delay can be considered constant over the burst duration, and
the recording window is long enough to contain the entire
useful length of the return signal1.

Between t′ = −Tp/2 and t′ = Tp/2, the instantaneous
transmitted frequency changes linearly from fc−B/2 to fc+
B/2. Introducing the chirp rate s = B/Tp, the transmitted
signals thus read:

STX(t′) = 1[−Tp/2;Tp/2](t
′)ej2πfct

′
ej2π

st′2
2 .

At first order in ṙ0/c, the signal received at time instant τn+t′

has left the instrument at time τn + t′(1− 2ṙ0/c)− 2 rnc (1−
ṙ0/c). Introducing a slowly varying complex amplitude a(τn)
to keep track of the effect on the field of the reflection on
the facet, and up to the geometric factors required to take into
account the antenna radiation pattern, spherical divergence and
propagation losses, which can all be reinstated at the end of
the calculation, the received signal is:

SRX(τn + t′) =

a(τn)STX

(
t′
(
1− 2

ṙ0
c

)
− 2

rn
c

(
1− ṙ0

c

))
. (4)

Upon reception, the signal is amplified and analogically mul-
tiplied by e−j2πfct

′
, prior to recording. During the recording

window, the return signal is “de-ramped” by a replica of the
transmitted chirp, either analogically prior to digitization or,
as in the Poseidon-4 instrument, numerically after digitization.
This replica is centered on t′ = t′trk, and is thus better
described as a function of yet another time scale, t = t′−t′trk.
One thus finally ends up with a digitized recording of

S(τn, t) = e
−j2π

(
fct

′+ st2

2

)
SRX(τn + t′trk + t).

1A number of delicate intermediate steps are required to make this
technologically feasible, in order to accommodate digitizer bandwidth or
memory constraints, such as introduction, and subsequent compensation of,
a digitization window delay with respect to the pulse start, pulse interleaving
control, PRI modulation to accommodate altitude variations, etc. These steps
are very well controlled, and we will in the following assume that the artefacts
they introduce have been perfectly compensated.
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C. Range compression

Using the expression of SRX given in Eq. (4), and neglect-
ing terms amounting to phase shifts smaller than 10−2 cycles,
the expression of the digitized signal segments is

S(τn, t) = a(τn)1[−Tp/2;Tp/2] (t+ 2(htrk − rn)/c)

×e
j4π

[
s
(rn−htrk)2

c2
− rn

λ − ṙ0
c

htrk
λ

]

×e−j4π
st
c [rn+

fcṙ0
s −htrk(1−

ṙ0
c )].

The term on the first line keeps track of the envelope of the
pulse. The term on the second line is a phase term, constant
over one pulse, but slowly changes from pulse to pulse. The
final term describes the time dependence of the deramped
echo on fast time. This time-dependence is used to obtain
the response of the instrument to the facet as a function of
observation range2, through a Fourier transform on t. Using
the fact that the independent variable r is linked to the analysis
frequency ω by the relationship r = htrk − cω

4πs , one obtains
the radar echo amplitude of the facet as a function of r at time
τn as:

S(τn, r) = a(τn)e
j4π

[
s
(rn−htrk)2

c2
− rn

λ − ṙ0
c

htrk
λ

]

× 1

Tp

∫
1[−Tp/2;Tp/2] (t+ 2(htrk − rn)/c)

×ej4π
st
c

[
r−rn−ṙ0

(
htrk

c + fc
s

)]
dt.

=a(τn)e
j4π

[
s
(rn−htrk)2

c2
− rn

λ − ṙ0
c

htrk
λ

]

×Υr

(
r − rn − ṙ0

(
htrk
c

+
fc
s

))
.

In this expression Υr(δr) = sinc
(

2πsTp

c δr
)

denotes
the range-compression amplitude impulse-response function,
which is symmetric and peaking around 0. At each instant,
the range-resolved waveform is thus peaked close to the
actual facet range rn, but includes cm-scale corrections for
the motion of the instrument during the travel time of the
radar pulse (ṙ0htrk/c term) and for delay-Doppler ambiguity
(ṙ0fc/s term). The first of these two corrections can be
absorbed in a change of the definition of τn, from the instant
of pulse transmission to the instant the pulse strikes the facet
(this convention has been used by [2]). The latter correction is
of a different nature, and has its origin in the range-resolution
method itself: the only differences allowing to discriminate a
time-shifted and a Doppler-shifted versions of a chirp occur
at its ends, in a vanishingly small part of its total duration.
A target observed from a moving instrument thus appears
shifted from its actual location, by an amount that depends on
the relative speed and on the chirp bandwidth and direction.
The facet thus appears shifted by ṙ0δtrr in the range-resolved
waveform, with δtrr = htrk

c + fc
s an effective time shift, equal

to 3.13 ms for the S6-MF flight parameters. The sensitivity of

2In the original article of [13], the range compression is performed
after the along-track Fourier transform. The order of these two stages is
unconsequential, and we have based our description on the order used in
the S6-MF onboard processor.

this term on htrk is small, and it is adequately evaluated using
the nominal flight altitude h. From Eq. (3), ṙ0 = vr− y0vt/h.
The part of this range correction, due to the radial velocity
of the platform vr, is uniform in y and identically affects the
whole scene. More importantly, the part due to the tangential
velocity vt, however, depends on the along-track location of
the facet, and can only be removed after this is estimated in
the Doppler-resolution stage.

The peak itself has a cardinal-sine shape, which stems
from the amplitude envelope of the chirp. The Fourier-space
representation of its square, which will be needed in the
following, is readily derived to be the “triangle” function

Υ̂2
r(K) = σr1[−1;1]

(
Kσr
2π

)[
1− |K|σr

2π

]
, (5)

with σr = c
2B .

For the Sentinel 6-MF parameters, the half-power width of
this function is equal to 0.886 × c

2B ≃ 0.415 m. Classically
[1], [6], it is approximated by a Gaussian dependence, though
some confusion exists regarding the appropriate width. One
choice is to select the value for which the −3 dB widths
of the cardinal-shape shape and the Gaussian approximation
coincide. For the power point target response (PTR) in the
range direction, this yields

Υ2
r(δr) ≃ e

− δr2

2σ2
r ,

using this time σr = 1√
2 log(2)

0.886c
4B = 0.176 m. The

equivalent expression in Fourier space reads

Υ̂2
r(K) ≃

√
2πσre

−K2σ2
r

2 . (6)

D. Doppler resolution

The next step in the evaluation of the contribution of the
individual facet to the DDM is to study the effect of the
Doppler frequency resolution. This step is performed through
a weighted Fourier transform in slow time. The discrete
sampling in τ tends to complicate notations. It can obscure
those characteristics of the DDM that are due to geophysical
processes with others that are due to technicalities (typically,
aliasing in Doppler frequency). We will thus conduct the
analysis as if the sampling was continuous in slow time. We
discuss the changes introduced by discrete sampling when
relevant. In this framework, the echo amplitude waveform due
to the facet at slow time τ can be modeled as

S(τ, r) =a(τ)e
j4π

[
s
(r0−htrk)2

c2
− r0

λ −htrk
λ

ṙ0
c

]

× e
−j4π τr′0

c

[
fc−2s

r0−htrk
c

]
×Υr (r − [r0 + τr′0 + ṙ0δtrr]) .

The phase term on the first line of this expression is constant
even in slow time, and can in fact be subsumed in the complex
return signal amplitude a(τ). The term on the last line encodes
the fact that the return waveform is essentially zero, except in
the close neighborhood of the actual facet range. Of the phase
terms in the second line, it can be seen that only the carrier
frequency term can induce a noticeable contribution. It is the
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Doppler shift term the DDA method is based on. The others
can be neglected.

The amplitude signature of the facet in the Delay-Doppler
plane3 is obtained by performing a weighted Fourier transform
in τ :

S(f, r) =
1

Tb

∫
w(τ)a(τ)e

−j2πτ
(
f+2

r′0
λ

)

×Υr (r − [r0 + τr′0 + ṙ0δtrr]) dτ.

In this expression, w(τ) is a “window” weighting function,
used to control the shape of the impulse response function
along the f dimension.

A small τ -varying term appears in the argument of the
range-compression impulse response function. For a fixed
value of r, this term amounts to a slowly-varying perturbation
of the window function used in the Fourier transform, giving
more weight to the beginning, center or end of the mea-
surement interval depending on whether the facet is entering,
dwelling in, or leaving the neighbourhood of r. The effect of
this term is small, broadening slightly the result in the range
direction for the large r′0 bins. Neglecting it (which amounts
to using for Υr its value at the middle of the observation
interval), we obtain

S(f, r) = Υr (r − [r0 + ṙ0δtrr])

× 1

Tb

∫
w(τ)a(τ)e

−j2πτ
(
f+2

r′0
λ

)
dτ.

E. Ensemble averaging over the sea surface realizations

Taking the squared modulus of S(f, r), the power response
for this realization of the facet is:

|S|2(f, r) = Υ2
r (r − [r0 + ṙ0δtrr])

1

T 2
b

∫∫
w(τ)w(τ ′)a(τ)a∗(τ ′)e

j2π(τ ′−τ)
(
f+2

r′0
λ

)
dτdτ ′.

The mathematical expectation of the DDM contribution per
unit projected area of the facets located around (x0, y0,∆+η)
must be obtained by averaging this individual contribution over
the possible realizations of the sea surface.

Sources of randomness that must be considered are N , the
actual number of facets, with probability pN , dependent on
the location and area of the patch, and for each facet, labelled
n,

• its corresponding vertical displacement due to waves, z̃,
• its corresponding vertical Lagrangian velocity, w̃,
• its corresponding complex reflecting amplitude at times
τ and τ ′, a(τ) and a(τ ′).

3This is an instance where the discrete sampling in τ introduces a difference
with the time-continuous analysis, by making the impulse-response periodic
in f with ambiguity period fp. While this ambiguity is unconsequential for
the high-fp instruments of CryoSat-2 and Sentinel-3, for which the sidelobes
correspond to very large along-track distances and are rejected by the antenna
diagram, the factor of two reduction in fp of the Poseidon-4 instrument
lets very conspicuous sidelobes enter the DDM. The power content in those
sidelobes significantly contributes to the stacked DDA power waveform. They
can be accounted for analytically, as will be shown in section IV-D.

Hence, in the most general setting, the overall DDM contri-
bution of a unit area patch located in the neighbourhood of
(x0, y0,∆+ η) should be expressed as:

⟨|S|⟩2 (f, r;x0, y0,∆+ η) = (7)

1

T 2
b

∞∑
N=0

pN (x0, y0,∆+ η)

N∑
n=0∫

· · ·
∫
Pn(z̃, w̃, a(τ), a

∗(τ ′);x0, y0,∆+ η)

Υ2
r

(
r + z̃ − h+ η − κ

2h
ρ20 − ṙ0δtrr

)
w(τ)w(τ ′)a(τ)a∗(τ ′)ej2π(τ

′−τ)(f− 2
λ [w̃+y0

vt
h −vr])

dz̃dw̃da(τ)da∗(τ ′)dτdτ ′.

The probability distribution function
∑
N pN

∑N
n Pn(· · · ) is

a very high-dimensional function, of which only specific
dependencies are currently known:

• The number of facets N and their complex reflec-
tion coefficient a are not known separately, but [33]∑
N pN

∑N
n

∫
|a|2Pn(|a|2)d|a|2 is proportional to the

normalized sea surface backscatter cross section, σ0,
whose statistics and dependencies with respect to environ-
mental conditions and observation geometry have been
extensively studied.

• The statistics of z̃, independently of the other variables,
have also been studied extensively. A Gaussian pre-
scription is a reasonable assumption, though higher-order
contributions likely exist, e.g. altimetric Sea State Bias
(SSB).

• Statistical correlations of z̃ and σ0 have been studied,
and are known to result in altimetric electromagnetic bias
(EMB).

• The joint statistics of z̃ and w̃ have been studied theoret-
ically [35]. In the Gaussian context, these variables are
independent.

• On the contrary, even in the Gaussian context, w̃ is not
independent of the local sea surface slope ∇z̃, which in
turn is correlated with the backscatter cross-section. A
correlation between surface backscatter and along-line-of-
sight surface velocity projection is thus expected, giving
rise to the “Geophysical Doppler” bias.

• The slow-time dynamics of the complex backscatter
amplitude a is very hard to study experimentally, and
thus remains elusive, despite its fundamental importance
in determining the optimal time window for coherent-
radar observations of the sea surface. Choosing a long
time window for the coherent processing is not beneficial
if the lifetime of the individual facets is short, as the
expected resolution improvement is not achieved, but
the opportunity to obtain independent looks is wasted.
For instance, the effective Doppler (hence along-track)
point target response function can be computed under
the assumptions of a Gaussian dependence on τ − τ ′ of
the correlation function ⟨a(τ)a∗(τ ′)⟩ and of a Gaussian
window function. This exercise shows that it is the short-
est time scale (facet coherence time or window function
width) that sets the effective Doppler resolution.
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Given all these knowledge gaps, we pursue the analysis
according to the following practical assumptions:

• We consider all facets to be independent. The sums over
facet number N and index n reduce to multiplication by
⟨N⟩, the mathematical expectation of N . ⟨N⟩ depends
on the observation geometry.

• We consider the elevations of the facets z̃ to be Gaussian
and independent of all other variables (i.e. the study of
SSB and EMB is left for future investigation).

• We consider the correlation time of the complex reflecting
amplitude a to be long enough with respect to the
observation window duration, i.e. its dynamics can be
neglected. This assumption is probably at least marginally
correct over the duration of one burst (6.97 ms). With
this assumption, the product of Fourier transforms over
slow time simplifies into a Doppler resolution PTR,

Υ2
f (δf) = 1

T 2
b

∣∣∣∫ Tb/2

−Tb/2
w(τ)e−j2πτδf

∣∣∣2. As discussed in
[2], if the so-called “Hamming” window is used for w(τ),
this PTR can be extremely well approximated by the
Gaussian shape

Υ2
f (δf) ≃

(
25

46

)2

e
− δf2

2σ2
f ,

with σf = 1√
2 log(2)

1.293
2Tb

≃ 78.74 Hz.

• After [32], [33], the sea surface NRCS is expressed
as σ0 = |R|2 ⟨N⟩π

〈
1/|Ω̃|

〉
, with |R|2 the normal-

incidence Fresnel power reflection coefficient and Ω̃ the
Gaussian curvature at specular points. Our placeholder
|a|2 can thus be linked to the physical and geometric
characteristics of the facet by |a|2 = |R|2π/|Ω̃|.

F. Averaging over z̃: recovering the “triple-convolution
model”

With these assumptions, the expression of the DDM contri-
bution per unit area of the neighbourhood of (x0, y0,∆+ η)
reads

⟨|S|⟩2 (f, r;x0, y0,∆+ η) = π|R|2 ⟨N⟩ (8)

×
∫
Psp(z̃)Υ

2
r

(
r + z̃ − h+ η − κ

2h
ρ20 − ṙ0δtrr

)
dz̃

×
∫∫

Psp(w̃, Ω̃;x0, y0)Υ
2
f

(
f − 2

w̃

λ
+ 2

ṙ0
λ

)
dw̃dΩ̃

|Ω̃|
,

where Υ2
r and Υ2

f are approximately Gaussian, with specified
widths, and Psp(z̃) and Psp(w̃, Ω̃) respectively provide the
(Gaussian) pdf of the elevation and joint pdf of the vertical
velocity and the total curvature of the surface at specular
facets. Since we have chosen to neglect z̃’s correlations with
the other variables, Psp(z̃) is identical to the full-surface pdf
of z̃, P (z̃).

The first integral is thus the convolution of a Gaussian with
the instrument range PTR:

Υ̃2
r(δr) =

∫
P (z̃)Υ2

r (δr + z̃) dz̃. (9)

This integral defines an effective range PTR, accounting for
both the effect of surface waves and the instrument PTR

(such effective quantities will be denoted by a ·̃ symbol
in the following). It is the “frozen-sea” contribution to the
detected interface thickness. It is accounted for by the “triple
convolution model” treatment of CA and DDA.

In the Gaussian sea state approximation,

P (z̃) =
1√
2πσh

e
− z̃2

2σ2
h ,

where the surface vertical displacement standard deviation σh
is related to the significant wave height Hs by

σh =
Hs

4
.

Using the Gaussian approximation of the instrument PTR
given by Eq. (6), the effective range PTR can thus be readily
approximated in physical space as

Υ̃2
r(δr) ≃

σr
σ̃r
e
− δr2

2σ̃r2 ,

with
σr =

1√
2 log(2)

0.886c

4B
, σ̃r =

√
σ2
r + σ2

h.

A representation using the exact range PTR expression Eq.
(5) can be obtained in Fourier space aŝ̃

Y 2
r (K) = σr1[−1;1]

(
Kσr
2π

)[
1− |K|σr

2π

]
e−

K2σ2
h

2 ,

where σr = c
2B . Except where explicitly mentioned, all graphs

in this article are produced using this formulation.
We now turn to the second integral in Eq. (8), which

involves the probability density function Psp(w̃, Ω̃).

G. Averaging over w̃: the effect of wave motion on the
Doppler PTR

As shown in [36], [37], this specular-points pdf follows from
the full-surface pdfs as

Psp(w̃, Ω̃) =
|Ω̃|
[
1 + ∂xz̃|2sp + ∂y z̃|2sp

]2
⟨N⟩

× P (∂xz̃ = ∂xz̃|sp, ∂y z̃ = ∂y z̃|sp, w̃, Ω̃).
Under a Gaussian assumption, it shows that the curvature
dependent terms in Eq. (8) in fact compensate: facets with a
really small curvature have a very large cross-section, but are
less frequent by an exactly compensating amount. At lowest
order in z̃, the curvature Ω̃ is a product of second spatial
derivatives of z̃. In a Gaussian framework, discussed in section
2.1 of [35], these derivatives are independent of both the wave
slope and the vertical velocity. Ω̃ can then be marginalized out
and integrated. The surface slope at specular facets is fixed by
the geometry, and expressed in terms of the observation angles
ψ and φ. There remains:

⟨|S|⟩2 (f, r;x0, y0,∆+ η) =
π|R|2

cos4(ψ)
(10)

× Υ̃2
r

(
r −

[
h− η +

κ

2h
ρ20 + ṙ0δtrr

])
×
∫
P (∂xz̃ = ∂xz̃|sp, ∂y z̃ = ∂y z̃|sp, w̃)

×Υ2
f

(
f − 2

w̃

λ
+ 2

ṙ0
λ

)
dw̃.
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The pdf of w̃ is discussed at length in appendix A, where
its expression is shown to read

P (w̃, ψ, φ) =
1

π
√
2πσw̃mssT

exp

(
− tan2 ψ

mssT

)
× exp

(
− 1

2σ2
w̃

[w̃ + UGD tan(ψ) cos(φ− φGD)]
2

)
,

with mssT the total mean squared surface slope, and

UGD = −Mss
−1 msv

the UGD vector, with UGD and φGD its magnitude and
direction. The distribution for w̃ is Gaussian, but not centered,
with variance

σ2
w̃ = mtt −msvT Mss

−1 msv,

where mtt, Mss and msv are defined in terms of spectral
moments of η̃ and its time and space derivatives. This variance
is uniform on the sea surface, and is somewhat smaller than
the full-surface variance of w̃, because part of the dispersion
of w̃ is absorbed in the variations of the projection of UGD

on the radar line-of-sight. Introducing this expression in Eq.
(10), one obtains:

⟨|S|⟩2(f, r;x0, y0,∆+ η) =
|R|2

cos4(ψ)

exp
(
− tan2 ψ

mssT

)
mssT

(11)

× Υ̃2
r

(
r −

[
h− η +

κ

2h
ρ20 + ṙ0δtrr

])
×
∫

exp

(
− 1

2σ2
w̃

[w̃ + UGD tan(ψ) cos(φ− φGD)]
2

)
× 1√

2πσw̃
Υ2
f

(
f − 2

w̃

λ
+ 2

ṙ0
λ

)
dw̃.

With Υ2
f known to be Gaussian, the last integral is the

convolution of two Gaussian functions. It yields the Doppler
Impulse Response function, accounting for the spreading effect
of surface wave motion on the relative velocity of the satellite
and the facet:

Υ̃2
f (δf) =

(
25

46

)2
σf
σ̃f
e
− δf

2σ̃f
2
, (12)

with

σ̃f
2
= σ2

f +
4σ2

w̃

λ2
.

Inserting this expression in Eq. (11), and introducing the
instrument power radiation diagram G and the various fac-
tors required to account for the spherical divergence of the
transmitted signal, the DDM contribution per unit transmitted
power of the neighborhood of (x0, y0,∆+ η) finally reads

dDDM(f, r;x0, y0,∆+ η) =
λ2G2(θ, φ)

(4π)3r40
σ0(ψ,φ)dS (13)

× Υ̃2
r

(
r −

[
h− η +

κ

2h
ρ20 + vrδtrr −

y0vt
h
δtrr

])
× Υ̃2

f

(
f +

2

λ

[
vr −

y0vt
h

+ tan(ψ)UGD cos(φ− φGD)
])

.

H. Discussion

Figure 3 presents the DDM obtained for 7 individual patches
of the sea surface located every 3000 m along the satellite
track, not accounting for (top graphs) and accounting for
(bottom graphs) the impact of surface waves on the signal.
vr has been set equal to 0 in this analysis.

A first striking feature is that the footprint of each patch is
very localized in the DDM: each sea surface patch produces
only a very small footprint over a burst duration, and even if
averaging over 7 consecutive bursts was performed to produce
the DDM ( 1

20 s incoherent averaging time such as classicaly
used), the signature of each patch would only describe a very
short segment of the parabola. Note, the full parabolic signa-
ture, often shown in publications, results from the combination
of many footprints of individual patches, and the full DDM
must be estimated as an integral over the sea surface.

A second feature, mostly visible Fig. 3a and b, is that
even in the “no-waves” case the frequency resolution achieved
in a single burst is quite coarse in comparison with the
total Doppler bandwidth (the ratio is equal to the number of
inter-pulse intervals per burst, 63 in this case). The “Range
Migration Correction” on which DDA processing is based, by
applying a frequency-dependent range shift, leaks this Doppler
spread into a large contribution to range spread. This can lead
to a strong overestimation of the significant wave height by
the parameter estimation algorithm at the re-tracking step.

The effective widths of the range and Doppler point-
target responses Υ̃2

r and Υ̃2
f , estimated as a function of

wind speed using the elevation spectrum model of [38] in
its fully developed limit, are represented in figure 4. The
wave contribution to the effective range PTR width rapidly
increases with wind speed, and becomes dominant for wind
speed larger than 6 m.s−1. This is consistent with the very
conspicuous broadening of the PTR in the range direction,
visible between figures 3b and 3d. On the opposite, the
instrumental contribution to the effective Doppler PTR width
dominates up to wind speeds in excess of 13 m.s−1. The
overall Doppler PTR width only weakly depends on wind
speed, remaining between 80 Hz, its low-wind value, and
120−130 Hz at high wind speed. Again, this is consistent with
the only marginal width increase of the PTR in the Doppler
direction between figures 3b and 3d.

Going back to Eq. (13), the effect of a non-zero vr on the
DDM is minor: the two terms which involve vr amount to
shifts of the DDM, one in the range direction (vrδtrr term
in the range PTR), and one in the Doppler direction (2vr/λ
term in the Doppler PTR, leading to a “Doppler Centroid”
correction). While not negligible, these two effects can readily
be corrected. In the following, we assume these corrections
already perfectly applied, and omit the two terms.

More importantly, the white lines in Fig. 3 mark the
locus of a flat (η = 0) sea surface on the DDM under a
number of approximations. The dotted lines represent the flat-
Earth approximation, which is obviously far too coarse. The
dash-dotted lines represent the spherical-Earth approximation,
seemingly much better representing the observed behaviour,
but still slightly off with respect to the center of the PTR in



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 10

10

0

10

20

30

40

50

r-r
A
 (m

)

a)

4000 2000 0 2000 4000
f (Hz)

10

0

10

20

30

40

50

r-r
A
 (m

)

c)

34

35

36

37

38

39

r-r
A
 (m

)

2 bursts
7 bursts

b)

4100 4200 4300 4400
f (Hz)

34

35

36

37

38

39

r-r
A
 (m

)

2 bursts
7 bursts

d)

Fig. 3. a) DDM contributions of 1 m2 sea surface patches regularly spaced every 3000 m in the along-track direction between y = −9000 m and 9000 m,
taking only into account the instrument point-target response. c) DDM contributions of 1 m2 sea surface patches regularly spaced every 3000 m in the
along-track direction between y = −9000 m and 9000 m, taking into account the smearing in the range and Doppler directions due to fully developed waves
described by the spectral form [38], with a 12 m.s−1 head wind (3.75 m significant wave height). b) and d): close-up views on the neighborhood of the
y = 9000 m patch (red rectangles in subplots a) and c)). On all the graphs, the color shades represent the DDM, normalized by its maximal value, the dotted,
dash-dotted, dashed and thick lines represent respectively the locus of the sea surface in the flat-Earth approximation, in the spherical-Earth approximation,
in the spherical-Earth approximation, account taken of the δtrr term, and taking also into account the Geophysical Doppler term. The green line segments
in suplots b) and d) represent the shift along the f direction of the image of the patch in the interval separating one burst and the next and one burst and the
sixth next (classical 20 Hz product). The thin white crosses in suplots b) and d) mark the tip of the Delay-Doppler PTR.
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Fig. 4. Effective range (σ̃r , blue, left axis) and Doppler (σ̃f , red, right
axis) widths of the wave-accounting Point Target Responses Υ̃2

r and Υ̃2
f as

a function of wind speed, for the elevation spectrum model [38] at infinite
fetch. Dashed lines mark the instrumental lower bounds, thin lines mark the
waves-only contribution, and thick lines represent the total effective widths.

Fig. 3d. Adding the range-Doppler ambiguity correction δtrr ṙ0
results in the dashed lines. While improved, reaching perfect
agreement definitely requires to correct the UGD effects (solid
line). This correction should be applied as a stretch in the f
coordinate, but can be more conveniently expressed as a shift
in the r coordinate for given f : taking x0 = 0 for simplicity,
the contribution to the DDM observed at f is the one that

should appear at f/(1 − κ cosφGDUGD/vt) or, using the
notations of Eq. (2), f/(1 + ε). Its spherical Earth deflection
correction ∆ should thus not be evaluated as

∆(f)|UGD=0 =
κ

2h

(fhλ)2

(2vt)2

but as

∆(f)|UGD
=

κ

2h

(fhλ)2

(2vt)2
1

(1 + ε)2
.

The effect of UGD must thus be represented as a perturbation
to the spherical Earth range deflection correction,

δ∆(f) = ∆(f)|UGD
−∆(f)|UGD=0

= ∆(f)|UGD=0

[
1

(1 + ε)2
− 1

]
≃ −2ε∆(f)|UGD=0

These corrections are represented as a function of the Doppler
frequency in figure 5. The spherical Earth deflection correction
(in blue) is clearly overwhelming. Yet, the other corrections,
are far from being negligible in the very demanding context
of precise nadir altimetry. The range-Doppler ambiguity cor-
rection ranges up to 15 cm at the ends of the unambiguous
along-track zone, and the δ∆ correction accounting for the
effect of the Geophysical Doppler contribution can reach
several centimeters of magnitude in the 12 m.s−1 situation
(the discussion in Appendix A shows that this case is in fact
representative of the frequently encountered ocean situations
with |U10| ≥ 7 m.s−1).

IV. NEAR-NADIR DELAY/DOPPLER RADAR:
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Fig. 5. Range corrections as a function of Doppler frequency for a sea surface
patch located on the satellite ground-track. The blue line (left scale) represents
the spherical-Earth range deflection. The solid red line (right scale, note
the very different scale) represents the range-Doppler ambiguity correction
ṙ0δtrr . The dashed red line (right scale) represents the δ∆ correction for
waves described by the spectral form [38], with a 12 m.s−1 head wind and
infinite fetch (3.75 m significant wave height).

FROM DELAY/DOPPLER MAP TO ECHO WAVEFORM

Section III provided us with a thorough understanding of the
instrument response to an infinitesimal ocean surface patch.
The upscaling operation from facet response to complete
DDM, and more specifically the ways in which it can be
brought back to the “triple convolutional model”, and the
production of the stacked echo waveform, are addressed in
this section.

A. The Flat Surface Impulse Response

Equation (13) expresses the DDM contribution of an in-
finitesimal ocean surface patch located at (x0, y0,∆ + η).
Considering the sea surface to be flat, particularizing to the
vr = 0 case, assuming the antenna radiation diagram to be ax-
isymmetric, the backscattering cross-section to be independent
of θ and φ in the very narrow solid angle actually illuminated
by the radar, approximating the 1/r40 term introduced by the
spherical divergence by its value at nadir, integrating over
the sea surface, denoting by primes the integration point
coordinates, and finally introducing the expression (2) for the
Doppler shift at the integration point, a simplified expression
for the full DDM is:

DDM(f, r) =
λ2σ0

(4π)3h4

∫∫
Sea

G2(θ′)ρ′dρ′dφ′

× Υ̃2
r

(
r − h+ η − κ

2h
ρ′2 + ρ′ cos(φ′)

vt
h
δtrr

)
× Υ̃2

f

(
f − 2vt

λh
ρ′(1 + ε) cos(φ′ − φε)

)
,

It is a 2-dimensional convolution of a combined range and
Doppler PTR, accounting for the effect of waves both in
terms of vertical displacement and Doppler broadening, with

a Flat sea Surface Impulse Response (FSIR), accounting for
the Geophysical Doppler bias,

FSIR(f, r) =
λ2σ0

(4π)3h4

∫∫
Sea

G2(ρ′/h)

× δr

(
r − h+ η − κ

2h
ρ′2 + ρ′ cos(φ′)

vt
h
δtrr

)
× δf

(
f − 2vt

λh
ρ′(1 + ε) cos(φ′ − φε)

)
ρ′dρ′dφ′.

In this expression, δr and δf denote Dirac delta functions
acting along the r and f directions.

At this point, a useful simplification is to replace the second
integration coordinate, i.e. the azimuth φ′, by the Doppler
frequency at the integration point 2vt

λh ρ
′(1 + ε) cos(φ′ − φε).

Neglecting the very small misalignment angle φε and an order
ε correction in the range-Doppler ambiguity term, and intro-
ducing Eq. (1) for the antenna gain, one obtains a Doppler-
distributed breakup of the FSIR as

FSIR(f, r) =

2λ2G2
0σ0

(4π)3h4

∫ ∞

0

∫ fmax

−fmax

δf (f − f ′)
e
−4 ρ′2

h2γ√
f2max − f ′2

× δr

(
r − h+ η − κ

2h
ρ′2 +

λ

2
f ′δtrr

)
ρ′dρ′df ′,

with fmax(ρ′) = 2vt
λh (1 + ε)ρ′. Defining

µε =
κhλ2

8v2t (1 + ε)2
, ν =

8

γκh
, (14)

Aε =
2λ2G2

0σ0
√
µε

(4π)3κh3
,

and the frequency and range coordinates of the apex of the
FSIR in the range/Doppler plane

fA =
λδtrr
4µε

, rA = h− η − µεf
2
A

the FSIR becomes

FSIR(f, r) = Aε
H(r − rA − µε(f − fA)

2)√
r − rA − µε(f − fA)2

e−ν[r−rA] (15)

with H(·) the Heaviside step function. Note, a very small
correction in the antenna diagram term has been neglected.
The effect of a non-zero ε in the expressions of fA and rA
is also absolutely negligible. This FSIR expression is suitable
for the study, in the triple convolution model framework, of
the radar altimeter echo waveform of a “non-frozen” sea.

With the S6-MF parameters, fA = 8.447 Hz, and µεf2A =
0.146 mm. Though not completely negligible, these shifts can
still be considered small and, being of technological origin, are
deterministic to be corrected for. In the following, we consider
them to be perfectly corrected (rA = h − η, fA = 0). This
amounts to considering that the correction represented as a
thick red line in Fig. 5 has been applied.
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Fig. 6. a) Graph of the Flat Surface Impulse Response Eq. (15) as a function of Doppler frequency shift f and range r − rA. FSIR replicas shifted by
+fp and −fp have been added to represent the along-track sidelobes. b) Graph of the physical space DDM obtained by inverse-transforming the Fourier
space expression Eq. (17) with σ̃f

2 = 0. This DDM takes into account the wave-induced broadening of the PTR in the range direction only, for 3.75 m
significant wave height. Fourier-space DDM replicas shifted by +fp and −fp have been added before the inverse transform to represent the along-track
sidelobes. c) Graph of the physical space DDM obtained by inverse-transforming the Fourier space expression Eq. (17). This DDM takes into account the
wave-induced broadening of the PTR in the range and Doppler directions due to fully developed waves described by the spectral form [38], with a 12 m.s−1

head wind (3.75 m significant wave height). Fourier-space DDM replicas shifted by +fp and −fp have been added before the inverse transform to represent
the along-track sidelobes. d) Graph of the Range Migration Corrected physical space DDM obtained by inverse-transforming the Fourier space expression Eq.
(22), in the same geophysical conditions. Fourier-space DDM replicas shifted by +fp and −fp have been added before the RMC and inverse transform to
represent the along-track sidelobes.
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B. From the Flat Surface Impulse Response to the echo
waveform

Going from the expressions of the Range/Doppler PTR
and the FSIR to an expression for the DDA echo waveform
requires the following steps:

• Computation of the Fourier transforms of the PTR and
the FSIR along the range and Doppler dimensions.

• Multiplication of the Fourier transforms.
• Inverse Fourier transformation in the Doppler dimension.
• Multiplication by a Doppler-dependent mask to imple-

ment the Range Migration Correction.
• Integration in the Doppler dimension to perform the

stacking operation.
• Inverse Fourier transformation in the range direction.

All but the very last of these steps can be analytically
performed.

The first step is detailed in Appendices B-A and B-B. The
Fourier transforms of the FSIR and the PTR are obtained as
functions of two new independent variables T (conjugate to
f ) and K (conjugate to r) as

̂̂
FSIR(T ,K) = A0

πe−iKrAe−
T 2

4µε(ν+iK)

√
µ0(ν + iK)

and

̂̃̂
Υ2
f Υ̃

2
r(T ,K) =

√
2πσf

(
25

46

)2

e−
T 2σ̃f

2+K2σ2
h

2 Υ̂2
r(K),

with Υ̂2
r(K) either of the two Fourier-space representations

Eq. (5) or Eq. (6) of the range PTR. Their product is:

̂̂
DDM(T ,K) = A0

π
√
2πσf√
µ0

252

462
e−iKrA−K2σ2

h
2

ν + iK
Υ̂2
r(K)

× e−
T 2

2 [σ̃f
2+ 1

2µε(ν+iK) ]. (16)

As a sanity check, this expression can be used to derive the
CA echo waveform. This calculation, presented in Appendix
B-C, indeed yields the classical expected results.

Noting this expression to be Gaussian in T , its inverse
Fourier transform in this variable is

D̂DM(f,K) = Aε

√
2πσf

252

462
e−iKrA−K2σ2

h
2

√
ν + iK

Υ̂2
r(K)

× e
− µε(ν+iK)f2

1+2µε(ν+iK)σ̃f
2√

1 + 2µε(ν + iK)σ̃f
2
. (17)

The next processing stage is to multiply this function by
a Doppler-dependent mask to apply the Range Migration
Correction. The aim of this operation is to phase-shift the
contributions at different f in order to ensure a construc-
tive summation in the stacking stage. Based on the original
treatment by [13], the phase correction is exp(iµ0Kf2). This

step is discussed in Appendix B-D, and yields the DDA echo
waveform in Fourier space as:

ŴDDA(K) = A0

√
2π

√
µ0
σf

252

462

× e−iKrA−K2σ2
h

2 Υ̂2
r(K)

√
ν + iK

√
ν − 2iK(ε+ µ0νσ̃f

2
) + 2µ0K2σ̃f

2
. (18)

Analytically inverting the Fourier transform to obtain the echo
waveform as a function of r is only straightforward in the
ε = 0, σ̃f = 0 case, and using the Gaussian approximation
of the range PTR. This is done in Appendix B-E, where the
result by [22] is recovered. The general case is more difficult.

C. Discussion

Figure 6a represents the FSIR in the (f, r) plane, account
taken of the along-track sidelobes in the Doppler dimension
(see section IV-D below). Restricting the attention to the
unambiguous region of the plane, the locus of the FSIR
displays the expected parabolic shape. It is slightly displaced
due to the UGD effect, but this effect is too faint to be
measurable in this representation. Taking slices for fixed f (not
shown), it varies from zero for r − rA ≤ µε(f − fA)

2, and
follows the expected 1/

√
r − rA − µε(f − fA)2 singularity

on crossing the locus. At the ends of the interval, the f > fp/2
(resp. f < −fp/2) branch of the parabola is aliased into the
f ≥ −fp/2 (resp. f ≤ fp/2) part of the domain. Close to
the ends of the interval, this induces a twofold increase of the
recorded power density.

Figure 6b now represents the DDM in the (f, r) plane, in the
σ̃f = 0 Hz approximation, for 12 m.s−1 head wind (3.75 m
significant wave height). This plot thus includes the effect of
the instrument PTR and waves in the range direction only. It
corresponds to the conditions studied by [22]. As expected, the
convolution by the wave-thickened instrument PTR introduces
a strong smearing of the FSIR in the range direction.

Figure 6c on the opposite represents the DDM in the (f, r)
plane for 12 m.s−1 head wind (3.75 m significant wave
height), taking account of the instrument and waves PTR in the
range and Doppler directions. The Doppler component of the
PTR smears the DDM in the Doppler direction and strongly
increases the thickness of the DDM. This effect is particularly
noticeable for large values of f , where the FSIR locus is more
slanted with respect to the iso-range lines, leading to a stronger
impact of the smearing in the f direction.

Finally, Figure 6d represents the range-migration corrected
DDM in the (f, r) plane, in the same environmental condi-
tions. The unambiguous part of the DDM has successfully
been flattened to the r ≃ rA portion of the domain. In this
portion of the DDM, the smearing in f has been converted
by the RMC into a strong excess of smearing in the r
direction, which can easily be confused with a strong excess
of significant wave height.

The sidelobes, on the other hand, have been straightened
(the parabolic part of the RMC applies for every f ), but not
folded to r ≃ rA. Their power density is thus missing from
the r ≃ rA region, and contaminating the r > rA part of the
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domain, thus affecting the overall shape of the echo waveform.
It turns out this issue can analytically be modeled. This is the
subject of the next section.

D. Accounting for the Doppler sidelobes of the Poseidon-4
instrument

The open-burst mode of acquisition of the Poseidon-4
instrument sets quite stringent constraints on the radar fp: it
has to vary to accommodate changes in flight altitude along the
orbit, and has to remain in the vicinity of the quite low value of
9 kHz. Consequently, signals scattered from distant up/down
track areas can experience phase shifts of more than a half
period between consecutive pulses. This introduces sidelobes
in the DDM: a bin located at (r, f) collects power that should
appear at (r, f), but also the power that should appear at
(r, f+fp) and (r, f−fp). Higher order ambiguities are rejected
by the instrument radiation diagram and play a negligible role.

These sidelobes are unconsequential in the CA con-
text, as the applied processing is not dependent on f .
In the DDA context, however, all echoes detected in the
Doppler bin at f are range-shifted by µ0f

2, including those
which should have been shifted by µ0(f + fp)

2 or by
µ0(f − fp)

2. The total stacked echo waveform is thus bet-
ter reproduced by stacking D̂DM(f,K)eiµ0Kf2

for f ∈[
− fp

2 ;
fp
2

]
, D̂DM(f,K)eiµ0K(f−fp)2 for f ∈

[
fp
2 ;

3fp
2

]
and

D̂DM(f,K)eiµ0K(f+fp)
2

for f ∈
[
− 3fp

2 ;− fp
2

]
. The expres-

sion for the full DDM including the sidelobes is given in
Appendix B-F Eq. (23).

After DCA correction, the DDM is even in f to a very good
approximation. The contributions from the two sidelobes are
thus identical. The sidelobes-accounting Fourier space DDA
waveform can thus be expressed as

ŴSL
DDA(K) =2

∫ fp
2

0

eiµ0Kf2

D̂DM(f,K)df (19)

+2

∫ 3fp
2

fp
2

eiµ0K(f−fp)2D̂DM(f,K)df.

The calculation is detailed in appendix B-G. Finally, the
Fourier-space sidelobes-accounting DDA waveform is ob-
tained as

ŴSL
DDA(K) = A0

√
2π3/2

√
µ0

σf
252

462
(20)

× e−iKrA−K2σ2
h

2 Υ̂2
r(K)

√
ν + iK

√
ν − 2iK(ε+ µ0νσ̃f

2
) + 2µ0K2σ̃f

2

×
[
erf

(
fp Ξε
2

)
+ e−f

2
p

Ξ2
ε
4 erfc

(
fp

[
Ξε
2

+
iµ0K
Ξε

])
−e

−f2
p

[
i2Kµ0+

9Ξ2
ε

4

]
erfc

(
fp

[
3Ξε
2

+
iµ0K
Ξε

])]
.

with erfc(x) = ex
2

erfc(x) the exponentially scaled comple-
mentary error function,

Ξε ≃

√
µε
ν − 2iK(ε+ µ0νσ̃f

2
) + 2µ0K2σ̃f

2

1 + 2µε(ν + iK)σ̃f
2 ,

and we recall for the sake of compactness that

A0

√
2π3/2

√
µ0

=
λ2G2

0σ0
(8π)3/2κh3

,

ε = −κUGD
vt

cos(φGD),

µε =
κhλ2

8v2t (1 + ε)2
, ν =

8

γκh
,

δtrr =
h

c
+
fc
s
, fA =

λδtrr
4µε

,

rA = h− η − µεf
2
A,

σr =
c

2B
, σf =

1√
2 log(2)

1.293

2Tb
,

σ̃f
2
= σ2

f +
4σ2

w̃

λ2
,

Υ̂2
r(K) = σr1[−1;1]

(
Kσr
2π

)[
1− |K|σr

2π

]
.

This analytically derived final expression is the IASCO DDA
waveform model.

V. DISCUSSION

A. Comparison between different waveform models

Figure 7 presents waveforms obtained using the different
expressions developed in the text, for a Hs = 3.75 m sea
surface generated using the spectrum of [38] for 12 m.s−1

wind and infinite fetch. All the waveforms are generated
using the same value of A0 for normalization. They contain
identical integrated energy, except for the dashed blue and
dashed magenta curves, which only account for the returns
from the unambiguous Doppler frequency band. Aside from
this particular case, the curves only differ by the expected
distribution of the received energy as a function of time.

The cyan curve, which represents the expected waveform
from CA processing, has a very different shape from the
others: after the sharp initial rise at the encounter of the radar
pulse with the surface, the power return in all range bins
is expected to be essentially identical, except for the slow
decrease due to the antenna radiation diagram.

On the contrary, DDA processing brings a much larger
portion of the received radar energy into the initial peak.
All DDA model waveforms reflect this general behaviour.
Significant differences encode the different sets of hypotheses
under which these waveforms are derived.

Typically, the waveform derived by [22], accounting for
the spreading effect in range of the vertical distribution of
backscattering facets, but not accounting for the quite coarse
frequency resolution of the along-track Fourier transform and
the broadening due to the vertical orbital velocities (red curve),
displays a much sharper initial rise. Its initial peak is much
higher than the other DDA waveforms. Accounting for the
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Fig. 7. Graph of altimeter waveforms computed for a 12m.s−1 side wind,
corresponding to Hs = 3.75 m, ε = 0, for the S6-MF flight parameters and in
a number of different processing configurations. The cyan curve represents the
CA waveform Eq. (21). The red curve represents the σ̃ = 0 DDA waveform
discussed in Appendix B-E, under the assumption of very large fp. The green
curve represents the DDA waveform Eq. (18), which takes into account the
Doppler PTR width, but still assumes a very large fp. The dashed blue
curve represents the unambiguous Doppler frequency range [−fp/2; fp/2]
contribution to the IASCO waveform model Eq. (20), and the continuous
blue curve represents the full IASCO waveform model Eq. (20), including
the effect of Doppler sidelobes. Finally, the magenta curves represent the
multilook waveforms produced by the “pySAMOSA” [29] implementation of
the established SAMOSA model [2] over the main lobe only (dashed magenta
curve), and after modification to account for the sidelobe aliasing (continuous
magenta curve). All the analytical curves correspond to the same A0 factor,
chosen such that the σ̃ = 0 waveform is one at the epoch. The SAMOSA
waveforms have been normalized to correspond to the same integrated energy
as the blue waveforms.

additional smearing of the energy in the Doppler dimension
leads to the quite different waveform depicted by the green
line. The main peak is largely reduced, and a significantly
earlier rise in energy (the “toe” mentioned in [22]).

This effect of the finite Doppler resolution of the along-
track Fourier transform is taken into account by the SAMOSA
model [2] of multi-look SAR altimeter returns, as well as by
the earlier semi-analytical models [20], [21], [23]. For these
model waveforms, a correction serendipitously emerges from
the numerical integrations performed over azimuth. Yet, the
broadening effect of the scattering facets motion is not taken
into account by any of these models.

Figure 6 clearly shows that the halved fp value of the S6-
MF instrument with respect to the CryoSAT and Sentinel-
3A instruments introduces aliasing in the along-track Fourier
transform. Consequently, only the energy returning from the
strip of the sea surface with a Doppler frequency shift com-
prised between −fp/2 and +fp/2 is correctly redistributed
by the RMC step. The waveform obtained by stacking over
this reduced frequency band is represented as a blue dashed
line in Figure 7. The height of the main peak is reduced
by almost 20% with respect to the green curve, obtained by
extending the integration to ±∞. Taking into account the
energy contained in the sidelobes (continuous blue curve)
only marginally increases the height of the main peak, but

slows the decrease of the signal tail. We stress that the total
energy content of this waveform is identical to that of the very
different-looking CA (cyan) or σ̃f = 0 (red) waveforms.

Waveforms produced using the well-established SAMOSA
model [2] are depicted by magenta lines, either multi-looking
over the unambiguous Doppler frequency range (dashed line)
or, after ad hoc modification to take into account the aliasing
effect, over the full frequency range (continuous line). In both
cases, the SAMOSA waveforms feature a higher main peak
and a somewhat reduced “toe” compared to their counterparts
produced using Eq. (20) (blue lines). The waveforms rapidly
match after to exhibit very similar shapes over the decay
region. Overall, the IASCO waveform model Eq. (20) is in
good agreement with the SAMOSA ones over the late peak
and decay region. Differences in peak shapes are however
significant, and will be discussed in the next section.

B. Effect of the Gaussian approximation of the range PTR
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Fig. 8. Graph of altimeter waveforms computed for a 12m.s−1 side wind,
corresponding to Hs = 3.75 m, ε = 0, for the S6-MF flight parameters.
The continuous blue curve represents the waveform obtained using the
full DDA waveform Eq. (20), considering for the instrument range PTR
the exact squared cardinal sine shape Eq. (5). The continous black curve
represents the waveform obtained in the same conditions, though using for
the instrument range PTR the Gaussian approximation Eq. (6). The dashed
blue curve represents the waveform obtained with the square cardinal sine
shape, this time neglecting the broadening induced by the surface wave
motions (ie in the σ̃f = σf approximation). The dashed black curve
represents the waveform obtained with the Gaussian approximation of the
PTR and in the σ̃f = σf approximation. Finally, the red curve represent the
multilook waveforms produced by the “pySAMOSA” [29] implementation of
the established SAMOSA model [2] after modification to account for the
sidelobe aliasing. The normalization is consistent with Figure 7.

The red curve in Figure 8 represents the waveform obtained
using the modified multilook SAMOSA model in the same en-
vironmental conditions, together with the waveforms obtained
with Eq. (20) using the sinc2 (blue curve) and Gaussian (black
curve) approximations of the instrument range PTR. The effect
of the Gaussian approximation is visible with a slight (∼ 4%)
increase in peak height, and a very slightly reduced “toe” with
respect to the more exact squared cardinal sine representation.
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Though this effect is clearly visible, it is not sufficient to
explain the discrepancy with the SAMOSA waveform.

The dashed black curve represents the waveform obtained
in the Gaussian range PTR approximation (consistent with
SAMOSA), but neglecting the Doppler broadening due to the
scattering facets motion (also consistent with SAMOSA). The
match is now clearly excellent.

This at the same time validates the IASCO waveform
model Eq. (20), but also hints at a strong impact of the
scattering facets motion on the SAR altimeter waveform.
As the difference between the continuous and dashed blue
curves shows, neglecting this effect likely leads to a strong
overestimation of the waveform peak height, as well as a
noticeable underestimation of the waveform “toe” extension.

As a side remark, we notice that the Gaussian approximation
of the instrument range PTR, which is not practically useful as
the final Fourier transform is performed numerically anyway,
has actually a slight (supposedly detrimental) effect. We will
henceforth not use it.

C. Sensitivity to environmental conditions
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Fig. 9. Graph of normalized altimeter waveforms for different 10-m neutral
wind speeds, with significant wave height and vertical velocity variance
computed from the spectrum [38] in its infinite-fetch limit. All waveforms
are computed with the full DDA waveform Eq. (20), considering for the
instrument range PTR the exact squared cardinal shape Eq. (5). The wind
direction is orthogonal to the satellite track (ε = 0). The influence of wind
on signal level through variations of the backscattering cross-section σ0 is
not accounted for.

1) Dependence on U10 at infinite fetch: The dependence
of the IASCO waveform model Eq. (20) is represented as a
function of 10-m neutral wind speed in Figure 9. The wind
direction is orthogonal to the satellite track (ε = 0). The wind
acts through its influence on Hs and σw̃, which are computed
using the spectrum prescription of [38] in its infinite-fetch
limit. The dependence of the peak height on wind through the
backscatter cross-section σ0 is not accounted for.

With increasing winds, the initial rise of the waveform
progressively broadens, and the peak height progressively
decreases. The point where the waveform is half-way up to its

maximum height also progressively shifts to earlier instants.
The decay part of the waveform is essentially impervious to
parameter changes.
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Fig. 10. Graph of normalized altimeter waveforms for fixed σw̃ =
0.77 m.s−1 and varying Hs.

2) Dependence on Hs for fixed σw̃: Figure 9 mixes the
influences of Hs and σw̃, the two parameters affecting the
waveform. Figure 10 shows the effect of changing the signifi-
cant wave height for a fixed value of σw̃, kept equal to its value
in an infinite-fetch 12 m.s−1 U10 sea surface, 0.77 m.s−1. ε
is kept equal to 0.

With increasing Hs, the peak height decreases, and the initial
rise progressively slackens. The half-height point gradually
shifts to earlier instants.
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Fig. 11. Graph of normalized altimeter waveforms for fixed Hs = 3.75 m
and varying σw̃ .

3) Dependence on σw̃ for fixed Hs: Figure 11 now con-
versely presents the effect of varying σw̃ for a fixed Hs, kept
equal to its 12 m.s−1 value of 3.75 m (refer to Figure 4 for
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intuition on the range of variations explored here). Clearly, the
influence of σw̃ on the waveform is quite different from the
influence of Hs: with increasing σw̃, the peak height decreases,
the waveform “toe” lengthens, but this is achieved without
shifting the half-height point of the peak.

One can see here a mechanism likely to bias the joint
estimation of Hs and rA from the waveform: in cases of
particularly large σw̃, one might imagine the peak of the
waveform to be quite low and the midpoint to be unaffected,
which a tracker might mistake for a large Hs situation with a
depressed sea surface.

4) Effect of the “Geophysical Doppler” shift (ε ̸= 0):
The effect of a non-zero ε is extremely small, and would
be very hard to appreciate from large-scale graphs such as
Figures 9, 10 and 11. To provide insight into its influence
on the waveform, the most practical approach is to study
the biases its presence induces in the results of a waveform
retracker such as SAMOSA. This is the subject of the next
section.

D. Tracker biases

The influences of UGD and σw̃ on the results of the
SAMOSA retracker are studied in this section, by generat-
ing IASCO waveforms using known parameter values, and
observing the biases of the retrieved values.
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Fig. 12. Difference between SAMOSA retracked Hs and “true” Hs as a
function of “true” Hs, obtained by varying U10 in the infinite-fetch limit of
spectrum [38].

1) Significant height: Figure 12 presents the difference
between “true” Hs and Hs estimates obtained running the
SAMOSA retracker on IASCO waveforms generated with
varying wind speeds. Again, the infinite-fetch form of the
spectra is used to estimate Hs, σw̃ and UGD as functions of
U10. Clearly, the produced waveforms are consistently asso-
ciated by SAMOSA to overestimated values of Hs. This bias
varies rapidly for small Hs, and increases weakly afterwards,
rising from 0.22 m for Hs ≃ 2 m to 0.29 m for Hs ≃ 10.5 m.
For a given wind speed, this bias is identical in the head-wind,

tail-wind and cross-wind situations, showing it is essentially
independent of ε, and dominated by the effect of σw̃.
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Fig. 13. SAMOSA retracked Sea Level Anomaly for a nominally flat surface
located at η = 0, obtained by varying U10 in the infinite-fetch limit of
spectrum [38].

2) Sea Level Anomaly: Figure 13 now presents the Sea
Level Anomaly (SLA) estimates obtained using the SAMOSA
retracker on IASCO waveforms generated for varying wind
speeds blowing over a flat surface located at η = 0. Clearly,
the biasing effect mentioned above is present: a quite large
bias, varying between −1 cm and 2 cm is present even for zero
ε (black curve). The mere existence of a non-zero σw̃ induces
a bias in the retrieved SLA. This time, however, the effect of
a non-zero “Geophysical Doppler” shift, though very small, is
clearly visible. The existence of a head wind lures the tracker
into overestimating the SLA, while the existence of a tail wind
has the opposite effect. The azimuthal dependence of the bias
(not shown) is essentially sinusoidal, but is not centered around
0, as the σw̃ effect introduces a (actually larger) isotropic bias.

E. Effect of instrument parameters

The IASCO waveform can be applied with no modifications
to the CryoSAT-2 and Sentinel-3A cases. However, as the
altitude, flight velocity and fp of these instruments are all
different, it is hard to disentangle from raw waveform plots
the changes due to the various parameters. This section is thus
devoted to a discussion of the sensitivity of the waveform to
the most important parameters, the pulse repetition frequency
and the platform flight altitude. The two other main parameters
are the antenna radiation diagram beamwidth and the flight
velocity. The antenna beamwidth affects the waveform in
a straightforward way, by changing the slope of the decay
region of the waveform (the finer the beamwidth, the faster the
decay). The flight velocity is not a very sensitive parameter
over its quite limited range of variation, and mainly affects the
balance between the main lobe and sidelobes of the along-track
SAR processing, by changing the portion of the instrument
FoV that is associated to Doppler shifts smaller than the
Nyquist frequency.
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Fig. 14. Graph of altimeter waveforms obtained for a 12m.s−1 side wind,
corresponding to Hs = 3.75 m, σw̃ = 0.77 m.s−1, ε = 0, for the S6-MF
flight parameters and for instrument fp equal to varying fractions of the actual
S6-MF fp.

1) Effect of instrument fp: Figure 14 shows the dependence
of the IASCO waveform as a function of the instrument fp,
expressed in fraction of the actual S6-MF fp, for constant
burst duration (i.e. the number of pulses per burst is increased
when fp increases). Reducing the instrument fp by a factor of
two (cyan curve) reduces the effectiveness of the RMC, and
reduces the main peak height by a large factor with respect to
the nominal (orange) curve. Interestingly, increasing the fp by
a factor of two, thus bringing it very close to the CryoSAT-2
and Sentinel-3A fp (green curve), seems to almost saturate this
effect. Further increasing fp only brings minimal changes (the
black curve represents the fp → ∞ limit). This is in fact not
unexpected, as for large values of fp the ambiguous frequency
ranges correspond to very distant along-track portions of the
sea surface, whose signal is effectively rejected by the antenna
radiation diagram.

2) Effect of instrument Np: Conversely, Figure 15 shows
the dependence of the IASCO waveform on the burst duration
(number of pulses per burst), for fixed fp. The burst duration
influences the waveform through the along-track SAR pro-
cessing resolution σf . Changing Nb changes the measurement
floor on σw̃, shown as the red dashed line in Figure 4. Higher
Nb values reduce the instrumental contribution to the overall
σ̃f . As can be seen in the figure, though Nb = 64, the
value implemented in the S6-MF onboard processor, is a bit
marginal, the WF obtained for a value of Nb = 128 (green
curve) is very close to the ideal curve obtained in the limit
of vanishing instrumental contribution (black curve) in these
conditions. Going much further could increase the influence of
the range walk of scatters during the burst duration. Also, the
finite lifetime of the individual scatters, which is currently not
well known, sets limits to what can be achieved by increasing
the coherent processing time window. Reprocessing S6-MF
data with Nb = 128 is feasible on ground, but can not be
done using the current onboard processor.

10 5 0 5 10 15 20
r-rA (m)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

W
F

DDA, f = 0
(Garcia & al. , 2014)
DDA, Nb=32
DDA, Nb=64
DDA, Nb=128
DDA, Nb=256
DDA, Nb 

Fig. 15. Graph of altimeter waveforms obtained for a 12m.s−1 side wind,
corresponding to Hs = 3.75 m, σw̃ = 0.77 m.s−1, ε = 0, for the S6-MF
flight parameters and fp, and for for varying instrument Nb (burst duration).
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Fig. 16. Graph of altimeter waveforms obtained for a 12m.s−1 side wind,
corresponding to Hs = 3.75 m, ε = 0, for varying platform altitude, the
S6-MF fp and constant 7200 m.s−1 platform speed. A compensation factor
of (h/h0)5/2 has been applied.

3) Effect of platform altitude: Figure 16 shows the de-
pendence of the IASCO waveform on the platform altitude
h, compensated for the expected h−5/2 power decrease [13].
The remaining dependence after amplitude compensation is
small, and is essentially due to changes in energy balance
between the main lobe and the sidelobes of the along-track
SAR processing. It almost disappears in the σ̃f → 0 limit. The
only difference remains in the decay region. It is consistent
with the change in the aliasing lobe slope in the DDM caused
by the change of µ. In this plot, the pulse repetition frequency
has been kept fixed and equal to its S6-MF value.
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VI. CONCLUSION

With the ambition to more precisely estimate the impact
of ocean surface motions on Delay-Doppler altimetry, a new
analytical (Fourier-space in range) Delay Doppler Altimeter
waveform has been derived. Developments start with the DDM
signature of an isolated backscattering facet of the sea surface,
the basic building block from which the aggregated DDM
response of the sea surface is composed. Through a careful
analysis of the joint statistics of its equivalent radar cross-
section, its elevation with respect to the mean sea level, and
its instantaneous velocity with respect to the radar instrument,
the ensemble average of this signature is obtained under the
Gaussian statistical approximation.

The convolution of this signature with the Flat Surface
Impulse Response is computed, yielding an analytical expres-
sion of the full DDM, Eq. (23). Integrating this expression
in Doppler, the IASCO waveform, an analytical expression
of the DDA waveform, is finally obtained, Eq. (20). This
waveform is validated against the well-established SAMOSA
model waveform, modified to account for the SAR aliasing
sidelobes.

Analytical, IASCO waveforms and related sensitivities can
be readily obtained with respect to technological and environ-
mental parameters. In particular, the influence of surface facets
orbital and mean motion on the retracking process has been
studied, using the SAMOSA retracker as a benchmark. Surface
phenomena not taken into account by the SAMOSA waveform
model, but addressed by the IASCO waveform model, are
found to potentially cause observable biases in geophysical
parameters of crucial scientific importance, such as surface
waves significant height and Sea Level Anomaly.

This opens a number of potential options to circumvent, or
take advantage of, these issues:

• On the one hand, a first, straightforward, option might
be to combine the SAMOSA and IASCO waveforms
in a retracker to retrieve and compare directly, through
a Maximum-Likelihood approach, estimates of surface
waves vertical motion standard deviation σw̃ and of
the along-track projection of the “Geophysical Doppler”
vector UGD.

• These new parameters should find scientific use in their
own right, or be used in parameterizations to input
altimeter ESB- or SSB-mitigation routines.

• An hybrid approach might also be attempted, using CA
estimates, which are impervious to the motion-induced
biases DDA studied here, as first guesses or constraints
for the DDA retracker. It will lead to the implementa-
tion of a Maximum A Posteriori optimization approach
ingesting both the DDA and CA instrument waveforms.

• Another possible option would be to apply the fitting
procedure to the DDM itself. Our Eq. (23) could serve
as the basis for such an attempt.

Future investigations will be conducted to further dwell on
these theoretical and analytical means to analyze actual and
future 2D off-nadir altimeter performances. Efforts will also be
conducted to optimize and extend processing strategies (e.g.

[39]) to retrieve upper ocean sea surface height slopes and
motions, to help extract upper ocean velocities.

APPENDIX A
EXPRESSING P (∂xz̃ = ∂xz̃|sp, ∂y z̃ = ∂y z̃|sp, w̃).

From section 2.1 in [35], an expression can be simply
derived for P (∂xz̃ = ∂xz̃|sp, ∂y z̃ = ∂y z̃|sp, w̃) in terms of
spectral moments of the sea surface elevation. In the notations
of [3], [40],

mtt = ⟨∂tz̃∂tz̃⟩ , msv =

∣∣∣∣ ⟨∂tz̃∂xz̃⟩
⟨∂tz̃∂y z̃⟩

,

Mss =

[
⟨∂xz̃∂xz̃⟩ ⟨∂xz̃∂y z̃⟩
⟨∂xz̃∂y z̃⟩ ⟨∂y z̃∂y z̃⟩

]
the correlation matrix of surface vertical velocity and surface
slope components is:

Mtss =

[
mtt msvT

msv Mss

]
and their joint pdf :

P (∂xz̃, ∂y z̃, w̃) =
1

(2π)3/2
√
|det(Mtss)|

× exp

−1

2
[w̃, ∂xz̃, ∂y z̃]Mtss

−1

∣∣∣∣∣∣
w̃
∂xz̃
∂y z̃

 .

The pdf of w̃ at ∂xz̃ = ∂xz̃|sp, ∂y z̃ = ∂y z̃|sp is obtained
by rearranging this expression. Using the Sherman-Morrison-
Woodbury matrix inversion formula, the block inverse of Mtss

reads:

Mtss
−1 =

1

σ2
w̃

[
1 −msvTMss

−1

−Mss
−1msv Css

]
,

with

σ2
w̃ = mtt −msvT Mss

−1 msv,

Css = σ2
w̃Mss

−1 +Mss
−1 msv msvT Mss

−1.

Also:
det(Mtss) = σ2

w̃ det(Mss).

One recognizes in −Mss
−1 msv the “Geophysical Doppler”

vector UGD [3]. This vector is composed of the Total Surface
Current Vector and a (usually dominant) “Wave Doppler”
vector. The magnitude of UGD and the azimuth towards
which it points are respectively denoted as UGD and φGD.
Figure 17 represents UGD,

√
mtt and σw̃ as a function of

wind speed, using the elevation spectrum model of [38] for
infinite fetch, and under the assumption of infinitely short
electromagnetic wavelength (see discussion at the end of this
section). Already discussed in [3], [40], UGD varies rapidly
with wind speed up to |U10| ∼ 7 m.s−1, after which it
levels off on a slowly increasing plateau. The other quantities,√
mtt and σw̃, increase almost monotonously,

√
mtt remaining

slightly larger than σw̃.
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Fig. 17. Spectral moments of ∂tη as a function of wind speed, for the
elevation spectrum model [38] at infinite fetch, expressed in m.s−1 (left axis)
and in Hz (right axis).

The pdf of w̃ for a given surface slope ∇z̃|sp is:

P (w̃,∇z̃sp) =
1

(2π)3/2σw̃
√

|det(Mss)|

× exp

(
− 1

2σ2
w̃

[w̃ +UGD · ∇z̃|sp]2
)

× exp

(
−1

2
∇z̃|Tsp Mss

−1 ∇z̃|sp
)
.

The term on the first line is a normalization factor, the term
on the second line shows that the mode of the distribution of
w̃ is displaced by the projection of −UGD along the radar
line-of-sight, and the final term accounts for the decreasing
probability of finding specular facets away from nadir. The
surface elevation gradient ∇z̃|sp on specular facets at the cur-
rent point is fixed by the observation geometry, and such that
∂xη|sp = tan(ψ) sin(φ), and ∂yη|sp = tan(ψ) cos(φ). The
UGD ·∇z̃|sp term thus reduces to UGD tan(ψ) cos(φ−φGD).
The surface slope covariance matrix Mss, being symmetric,
can be diagonalized by a mere coordinate system rotation, and
a maximal surface slope variance azimuth φss can be found
such that:

Mss = Rφss ×
[

ma 0
0 mx

]
×R−φss ,

with Rφss the matrix describing rotation of angle φss in the
(x, y) plane, and ma and mx the mean squared surface slopes
in the “along” and “across” directions. With these notations,
one obtains

P (w̃,∇z̃sp) =
1

(2π)3/2σw̃
√
mamx

× exp

(
− 1

2σ2
w̃

[w̃ + UGD tan(ψ) cos(φ− φGD)]
2

)
× exp

(
− tan2 ψ

2

[
cos2(φ− φss)

ma
+

sin2(φ− φss)

mx

])
.

As in [12], we denote the total mean squared surface slope by
mssT = ma +mx. The fractional difference between ma and

mx is described by δss, such that ma = mssT
2 (1 + δss) and

mx = mssT
2 (1− δss). With these notations

P (w̃,∇z̃sp) =
1

π
√
2πσw̃mssT

√
1− δ2ss

× exp

(
− 1

2σ2
w̃

[w̃ + UGD tan(ψ) cos(φ− φGD)]
2

)
× exp

(
− tan2 ψ

mssT(1− δ2ss)
[1− δss cos(2(φ− φss))]

)
.

The integrals yielding the mean squared slope statistics as
moments of the surface elevation spectrum logarithmically
diverge with wavevector k: they are thus dependent on the
structure of the sea surface at all scales. This ultraviolet diver-
gence can be regularized either by the roll-off of the elevation
spectrum in the viscous regime, or by the filtering effect caused
by the finiteness of the electromagnetic wavelength, depending
on which limit is reached first. Numerous studies introduced
mssshape to account for the electromagnetic filtering effect.

In the optical limit, [41]–[43] show mx/ma to be weakly
dependent on environmental conditions and close to 0.6. In
the present notations, this translates to δss ≃ 0.25.

Admittedly, the relevance of these optical results to Ku-
band physics remains to be firmly established, but point to a
small impact of directional effects on the backscattering cross-
section in the near-nadir geometry [44]. Taking the δss → 0
limit in the above expression:

P (w̃,∇z̃sp) =
1

π
√
2πσw̃mssT

exp

(
− tan2 ψ

mssT

)
× exp

(
− 1

2σ2
w̃

[w̃ + UGD tan(ψ) cos(φ− φGD)]
2

)
.

Note one should probably replace mssT by mssshape to
empirically account for the electromagnetic cut-off effect. In
our calculations, integrations are performed up to the viscous
cut-off limit, using the spectral form proposed by [38], to keep
mssT in the developments.

APPENDIX B
FROM FSIR TO ECHO WAVEFORM

A. Fourier transformation of the FSIR

Starting from Eq. (15), the Fourier transform in r and f of
the FSIR can be expressed as

̂̂
FSIR(T ,K) = Aεe

−i[T fA+KrA]

×
∫∫

dfdre−iT f−r(ν+iK)H(r − µεf
2)√

r − µεf2
.

Performing the change of variable
√
r − µεf2 → u turns this

expression into

̂̂
FSIR(T ,K) = Aεe

−i[T fA+KrA]

×
∫

dfe−iT f−(ν+iK)µεf
2

∫
e−u

2(ν+iK)du.
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The two Gaussian integrations can be performed indepen-
dently. Introducing the approximations µε ≃ µ0(1 − 2ε) and
Aε ≃ A0(1− ε), one obtains the final result as

̂̂
FSIR(T ,K) = A0

πe−i[T fA+KrA]e−
T 2

4µε(ν+iK)

√
µ0(ν + iK)

.

B. Fourier transformation of the wave-accounting Point Target
Response

Starting from the expressions (9) and (12) of the wave-
accounting PTRs, and using the fact that∫

due−iuKe−
u2

2σ2 =
√
2πσe−

K2σ2

2 ,

the Fourier transform of the PTR is easily obtained as

̂̃̂
Υ2
f Υ̃

2
r(T ,K) =

√
2πσf

252

462
e−

T 2σ̃f
2+K2σ2

h
2 Υ̂2

r(K).

Depending on the intended use of the expression, either the
exact representation of the instrument PTR Eq. (5) or its
Gaussian approximation Eq. (6) can be used for Υ̂2

r(K).

C. Computation of the CA echo waveform from Equation (16)

Going from expression (16) to the DDA waveform still
requires significant work. The succession of steps is detailed
in the main text: the Fourier-space DDM must still be inverse-
transformed in the Doppler dimension, the RMC must be
applied, the result must be stacked by integration in the
Doppler dimension, and the result must be inverse-transformed
in the range dimension to yield the waveform.

In the CA context, however, no RMC is applied before the
integration. The range Fourier-transform of the CA waveform
is equal to the Doppler-dimension integral of the DDM, which
is easily obtained as the value of Eq. (16) along the T = 0
line:

ŴCA(K) = A0

√
2ππσf√
µ0

252

462
e−iKrA

e−
K2σ2

h
2

ν + iK
Υ̂2
r(K).

Assuming the Gaussian shape for Υ̂2
r , the inverse Fourier trans-

form of this function can be obtained using Eq. 3.462.3 of [45]
in terms of the parabolic cylinder function D−1. This function
can in turn be expressed in terms of the complementary error
function, and the result is obtained as:

WCA(r) = A0
π2σrσf√

µ0

252

462
e−

ν2σ̃r
2

2 (21)

× exp
(
−ν
[
r − rA − νσ̃r

2
])

erfc

(
−r − rA − νσ̃r

2

√
2σ̃r

)
.

This expression coincides with the classical result [1], [22].
The expression of rA contains a δt2rrv

2
t

2κh shift, which amounts
to 0.146 mm: due to the range-Doppler ambiguity bias, the
sea surface appears 0.146 mm closer to the satellite than it
actually is. The effective interface thickness σ̃r, accounting for
both the instrument PTR and the sea surface height dispersion
due to waves, has its usual expression.

D. Range Migration Correction and stacking

In this step, the expression of D̂DM(f,K) given by Eq. (17)
has to be multiplied by exp(iµ0Kf2), and the result must be
integrated (“stacked”) in f . The product of the DDM Fourier
transform and the RMC mask is:

D̂DMRMC(f,K) = Aε

√
2πσf

252

462
e−iKrA−K2σ2

h
2

√
ν + iK

Υ̂2
r(K)

× e
−f2

[
µε(ν+iK)

1+2µε(ν+iK)σ̃f
2 −iKµ0

]
√
1 + 2µε(ν + iK)σ̃f

2
.

Introducing Ξε such that

Ξ2
ε =

µε(ν + iK)

1 + 2µε(ν + iK)σ̃f
2 − iKµ0,

it can be expressed as

D̂DMRMC(f,K) = Aε

√
2πσf

252

462
e−iKrA−K2σ2

h
2

√
ν + iK

Υ̂2
r(K)

× e−Ξ2
εf

2√
1 + 2µε(ν + iK)σ̃f

2
. (22)

Integrating this expression in f yields the Fourier-transform
in r of the DDA waveform. The integral is Gaussian and is
easily performed, and the result is obtained as

ŴDDA(K) = Aε

√
2π3/2σf

252

462
e−iKrA−K2σ2

h
2

√
ν + iK

Υ̂2
r(K)

× 1

Ξε

√
1 + 2µε(ν + iK)σ̃f

2
.

This expression now deserves being simplified. Using again
the approximations µε ≃ µ0(1 − 2ε) and Aε ≃ A0(1 − ε),
and neglecting terms of order ε2, one obtains

Ξε ≃

√
µε
ν − 2iK(ε+ µ0νσ̃f

2
) + 2µ0K2σ̃f

2

1 + 2µε(ν + iK)σ̃f
2

and

ŴDDA(K) = A0

√
2π3/2σf

252

462
e−iKrA−K2σ2

h
2

√
µ0

√
ν + iK

Υ̂2
r(K)

× 1√
ν − 2iK

[
ε+ µ0νσ̃f

2
]
+ 2µ0K2σ̃f

2

.

E. Analytical inversion in the ε = 0, σ̃f = 0 case

Inverting this Fourier transform in the general case is
difficult. Assuming a Gaussian range PTR, the special case
ε = 0, σ̃f = 0 studied by [22] is however tractable, and
provides a check of the expression. Starting from

WDDA(r) = A0
πσrσf√
µ0ν

252

462

∫
dKe

iK(r−rA)e−
K2σ̃r

2

2

√
ν + iK

,
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introducing the integration variable shift K → K + iν brings
the integral to the form

WDDA(r) = A0
πσrσf√
νµ0

252

462
e−ν(r−rA−ν σ̃r

2

2 )∫
(iK)−1/2eiK(r−rA−νσ̃r

2)e−
K2σ̃r

2

2 dK.

Using Eq. 3.462.3 of [45] then yields

WDDA(r) = A0σrσf
252

462

√
2π3/2√
σ̃rνµ0

D−1/2

(
−r − rA − νσ̃r

2

σ̃r

)

exp

(
−ν

2σ̃r
2

2
− ν(r − rA − νσ̃r

2
)− (r − rA − νσ̃r

2
)2

4σ̃r
2

)
where D−1/2 is the parabolic cylinder function of order −1/2.

Up to changes in the normalization constant and the trans-
position from r to two-way travel time, this expression is
identical to Eq. (A16) of [22].

As noted by these authors, numerical implementations of
this parabolic cylinder function have a tendency to overflow for
negative argument. This problem can be circumvented using
Eqs. (19.3.7, 19.3.8, 19.27.4 and 19.27.5) from [46] to express
it in terms of modified Bessel functions as:

D−1/2(x) =

√
|x|
2π

K1/4

(
x2

4

)
+H(−x)

√
π|x|I1/4

(
x2

4

)
.

A more uniform balancing of the different terms of the
expression can then be achieved using the exponentially scaled
implementations of the modified Bessel functions.

F. Accounting for sidelobes in the DDM

For f ∈ [−fp/2; fp/2], the full DDM, accounting for
Doppler sidelobes, can be expressed as:

D̂DM
SL

RMC(f,K) = eiµ0Kf2

×
[
D̂DM(f,K) + D̂DM(f + fp,K) + D̂DM(f − fp,K)

]
Starting from Eq. (17), this is easily expressed as:
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√
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462
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ε+iµ0K)fp(fp−2f)

]
.

G. Accounting for sidelobes in the DDA waveform

Starting back from Eqs. (19) and (17), the main lobe
contribution to the sidelobes-accounting DDA waveform can
be expressed as

2

∫ fp
2

0

eiµ0Kf2

D̂DM(f,K)df = 23/2Aεπσf
252

462
Υ̂2
r(K)

× e−iKrA−K2σ2
h

2

√
ν + iK

√
1 + 2µε(ν + iK)σ̃f

2

∫ fp/2

0
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2

df.

The integral can be expressed in terms of the error function.
After simplification, this leads to

2
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2
.

The contribution of the sidelobes, on the other hand, is

2

∫ 3fp
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2
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×
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2
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2−i2µ0Kffpdf.

The integral can again be expressed in terms of the comple-
mentary error function erfc. The calculation is tedious, but
straightforward, and the result is obtained as:
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Finally, the complete Fourier space expression of the
sidelobes-accounting DDA waveform is obtained as

ŴSL
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Again, numerical implementations of the complementary error
function have a tendency to overflow, and one has to resort
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to exponentially scaled implementations. Denoting erfc(x) =
ex

2

erfc(x), a more stable expression is obtained as
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